Diameter-Sensitive Breakdown of Single-Walled Carbon Nanotubes upon KOH Activation.

نویسندگان

  • Jianglin Ye
  • Shuilin Wu
  • Kun Ni
  • Ziqi Tan
  • Jin Xu
  • Zhuchen Tao
  • Yanwu Zhu
چکیده

While potassium hydroxide (KOH) activation has been used to create pores in carbon nanotubes (CNTs) for improved energy-storage performance, the KOH activation mechanism of CNTs has been rarely investigated. In this work, the reaction between single-walled CNTs (SWCNTs) and KOH is studied in situ by thermogravimetric analysis coupled to infrared (IR) spectroscopy and gas chromatography/mass spectrometry (MS). The IR and MS results clearly demonstrate the sequential evolution of CO, hydrocarbons, CO2 , and H2 O in the activation process. By using the radial breathing mode of Raman spectroscopy, a diameter-sensitive selectivity is observed in the reaction between SWCNTs and KOH, leading to a preferential distribution of SWCNTs with diameters larger than 1 nm after activation at 900 °C and a preferential removal of SWCNTs with diameters below 1 nm upon activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes

Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...

متن کامل

Theoretical Study of Addition Reaction of Carbene and Zigzag Single-walled Carbon Nanotube

The reaction mechanism between (H2C) and (7, 0), zigzag single-walled carbon nanotubes(ZSWCNTs) on two different orientation of C-C have been studied by semi empirical AM!method. The activation barriers of (H2C) adding to (7, 0) ZSWCNT are computed and compared.The effects of diameters of zigzag SWCNT on their binding energies were studied

متن کامل

A PARAMETRIC STUDY ON THE GROWTH OF SINGLE-WALLED CARBON NANOTUBES OVER CO-MO/MGO NANOCATALYST IN A FLUIDIZED BED REACTOR BY CCVD METHOD

Single-walled carbon nanotubes (SWNTs) with high yield and quality were synthesized using chemical vapor deposition (CVD) over Co-Mo/ MgO nanocatalyst in a fluidized bed reactor. Different parameters such as temperature, the ratio of hydrocarbon source to hydrogen, the flow rate of gas, growth time, the size of catalyst particles, heating rate, and the kind of hydrocarbon source were examined t...

متن کامل

Modeling and Simulation of Multi-walled Carbon Nanotubes using Molecular Dynamics Simulation

Molecular dynamics simulation is performed on the buckling behavior of single and multi-walled carbon nanotubes under axial compression. Brenner’s ‘second generation’ empirical potential is used to describe the many-body short range interatomic interactions for singlewalled carbon nanotubes, while the Lennard Jones 12-6 model for van der Waals potential is added for multi-walled carbon nanotube...

متن کامل

Adsorption and migration of carbon adatoms on carbon nanotubes: Density-functional ab initio and tight-binding studies

We employ density-functional plane-wave ab initio and tight-binding methods to study the adsorption and migration of carbon adatoms on single-walled carbon nanotubes. We show that the adatom adsorption and migration energies strongly depend on the nanotube diameter and chirality, which makes the model of the carbon adatom on a flat graphene sheet inappropriate. Calculated migration energies for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemphyschem : a European journal of chemical physics and physical chemistry

دوره 18 14  شماره 

صفحات  -

تاریخ انتشار 2017